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ABSTRACT: We find exact solutions to Einstein-Maxwell field equations which can be used to 

model the interior of charged relativistic anisotropic fluid sphere.  The field equations are transformed 

to a simpler form using the transformation; the integration of the system is reduced to solving the 

condition of pressure anisotropy. The solution of the system is reduced to a difference equation with 

variable rational coefficients which can be solved in general.  It is possible to obtain general class of 

solutions in terms of special functions and elementary functions for different model parameters. Our 

results contain particular models found previously including models of charged relativistic anisotropic 

spheres. 
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INTRODUCTION  

Exact solutions of the Einstein-Maxwell system are important in the description of 
relativistic astrophysical processes. The first exact solution to the Einstein field 
equations discovered was the Exterior Schwarzschild solution which describes the 
gravitational field outside a static spherically symmetric body. This solution is 
essential for a discussioin of the clasical tests of general relativity. In this paper we 
are concerned with anisotropic and charged fluids in general relativity theory 
satisfying the Einstein-Maxwell system. The gravitational filed is taken to be 
spherically symmetric and static since these solutions may be applied to relativistic 
stars. A number of researchers have examined how anisotropic matter affects critical 
mass, critical surface redshift and stability of highly compact bodies. These 
investigations are contained in the paper by Dev and Gleiser ( Dev and Gleiser, 
2003). Some researchers have suggested that anisotropy may be important in 
understanding the gravitational behavior of  boson stars and the role of strange 
matter with densities higher than neutron stars. Mark and Harko (Mark and Harko, 
2002) and Sharma and Mukherjee (Sharma and Mukherjee, 2002) suggest that 
anisotropy is crucial ingredient in the description of dense stars with strange matter.  

 
The main objective of this paper is two-fold. Firstly, we seek to model a charged relativistic 

anisotropic sphere which is physically acceptable. Secondly, we seek to regain an 

uncharged and isotropic solution which satisfy the relevant physical criteria when the electric 

field and the anisotropic factor vanishes similar to the recent treatment of Komathiraj and 

Maharaj (Komathiraj and Maharaj, 2010).  The approach followed in this paper has proved to 

be a fruitful avenue for generating new exact solutions for describing the interior spacetimes 

of charged anisotropic spheres. In Section 2, we obtain a simple form of the condition of 

pressure anisotropy extended to the electromagnetic field with the assistance of appropriate 

transformation. Upon specifying choices for one of the gravitational potentials, electric field 

and the anisotropic factor, we obtain the second order differential equation in the remaining 

gravitational potential which facilitates the integration procedure. It is then possible to exhibit 

exact solutions to the Einstein-Maxwell system in a series form. In section 3 we present two 
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linearly independent classes of solutions as combinations of polynomials and algebraic 

functions.   Finally in section 4, we discuss the physical feature of the solutions. 

 
2.  THE ANISOTROPIC EQUATIONS 

The metric of statics spherically symmetric spacetimes in curvature coordinates can be 

written as  
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where λ and  ν are arbitrary functions.  For a charged perfect fluid the Einstein-Maxwell 

system of field equations is given by   
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for the line element (1). The quantity  is the energy density, is the radial pressure,  is 

the tangential pressure and E is the electric field intensity.  The Einstein-Maxwell field 

equations (2) describe the gravitational behaviour for an anisotropic imperfect fluid. For 

matter distributions with   (isotropic pressures), the Einstein’s equations for a perfect 

fluid may be regained from (2). We introduce the following transformation to generate new 

solutions. It is convenient to introduce a new coordinate x and two new metric functions y(x) 

and Z(x) defined as follows:  

 

    )3(,, 22222 CrxexZexyA   
 

where A and C are constants. This transformation enables us to write the system (2) to the 

new system 
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where dots denote differentiations with respect to x and the quantity  is defined as the 

anisotropy factor. To integrate the system it is necessary to choose three of the variables 

.  In this approach we specify Z, E and   

In the integration procedure, we make the following choices: 
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where ,k and      are arbitrary constants.  The form chosen ensures that the metric 

function Z is continuous and well behaved in the interior of the star for the wide range of 

values of parameter k.   In addition the electric field intensity and the anisotropic factor 

vanishes at the stellar center and has positive values in the interior of the star for relevant 

choices of the constants. Upon substituting these choices in equation (4c) we obtain  
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which is the master equation of the system (4).  Note that we have essentially reduced the 

solution of the field equation to integrating (5). The differential equation (5) has to be solved 

to find an exact model for a charged anisotropic fluid sphere. We now introduce a new 

function  

xz  1  in equation (5) to obtain  
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which is the second order linear differential equation in terms of the new dependent variable  

Y and independent variable  z.  With   the equation (6) can be solved using the method 
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of Frobenius.   As the point  is a regular singular point of (6), there exist two linearly 

independent solutions of the form of a power series with centre .  We therefore assume  
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where  are the coefficients of the series and b is a constant.  For a legitimate solution we 

need to determine the coefficients and the constant.  On substituting (7) into (6), we obtain 

the recurrence formula 
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and the indicial equation 
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Now it is possible to generate two linearly independent solutions to (6) with the assistance of 

(8) and (7). For the parameter value b=0, the first solution is given by  
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For the parameter value b = 3/2 we obtain the second solution  
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Since the function Y1 and Y2   are linearly independent we have found the general solution to 

(5). In terms of the original variable x, the functions Y1 and Y2 given above can be written and 

consequently the general solution become   
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Thus we have found the general series solution (9) to the differential equation (5). This 

solution is expressed in terms of a series with real arguments unlike the complex arguments 

given by software packages.   

3. ELEMENTARY SOLUTIONS 
 

The general solution (9) is given in the form of a series and can be expressed in terms of 

hypergeometric functions which are special functions. It is well known that the 

hypergeometric functions can be written in terms of elementary functions for particular 

parameter values. If we introduce the transformation 
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Equation (10) is a special case of hypergeometric differential equation.  It is possible to 

obtain two linearly independent solutions to (10) in terms of hypergeometric functions  Y1 and 

. These two functions are given by  
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It is possible to expresse these two hypergeometric functions in terms of elementary 

functions for particular parameter values. Consequently these two functions can be written 

completely as combination of polynomials and algebraic functions by restricting the range of 

values of .,   Thus we can express the first category of solution to (5) as  
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  where K+α+β=(2n+3)(2n+1). 

The second category of solution is given by  
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for  K+α+β=4n(n-1). 

 

Consequently we have demonstrated that elementary functions can be extracted from the 

general series in (9) by restricting the parameter values. It is important to observe that the 

Einstein-Maxwell solutions (11) and (12) apply to both isotropic and anisotropic relativistic 

star.  

4. RESULTS AND DISCUSSION   

We have found solutions to the Einstein-Maxwell system (4), by utilizing the coordinate 

transformation. A particular form for one of the gravitational potentials was assumed and the 

electric field intensity, anisotropic factor were specified.  Systematic series analysis 

produced recurrence relation that could be solved in general. This produced new exact 

solutions to the Einstein-Maxwell field equation in the form of series with real arguments. For 

particular values of the model parameters involved it is possible to write the solution in terms 

of elementary functions. The anisotropic factor and the electric field intensity may vanish in 

the solutions and we can regain the isotropic as well as the uncharged solutions.  Thus our 

approach has the advantage of necessarily containing a neutral isotropic stellar solution. The 

simple form of the solutions found facilitates the analysis of the physical features of a 

charged anisotropic fluid sphere. We may generate individual models found previously from 

our general class of solutions. These can be explicitly regained from the general series 

solution (9) or the elementary functions (11) and (12).  
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